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Abstract

Runge–Kutta discontinuous Galerkin (RKDG) method is a high order finite element method for solving hyperbolic con-
servation laws employing useful features from high resolution finite volume schemes, such as the exact or approximate Rie-
mann solvers serving as numerical fluxes, TVDRunge–Kutta time discretizations, and limiters. Inmost of theRKDGpapers
in the literature, theLax–Friedrichs numerical flux is useddue to its simplicity, although there aremanyother numerical fluxes
which couldalsobeused. In thispaper,we systematically investigate the performanceof theRKDGmethodbasedondifferent
numerical fluxes, including the first-order monotone fluxes such as the Godunov flux, the Engquist–Osher flux, etc., and sec-
ond-order TVDfluxes,with the objective of obtaining better performance by choosing suitable numerical fluxes. The detailed
numerical study is mainly performed for the one dimensional system case, addressing the issues of CPU cost, accuracy, non-
oscillatory property, and resolution of discontinuities. Numerical tests are also performed for two dimensional systems.
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1. Introduction

In this paper, we investigate the performance of the Runge–Kutta discontinuous Galerkin (RKDG)
method [4,3,2,1,5,6] based on different numerical fluxes for solving nonlinear hyperbolic conservation laws
ut þr � f ðuÞ ¼ 0;

uðx; 0Þ ¼ u0ðxÞ;

�
ð1:1Þ
with the objective of obtaining better performance by choosing suitable numerical fluxes.
The first discontinuous Galerkin (DG)method was introduced in 1973 by Reed andHill [17], in the frame-

work of neutron transport (steady state linear hyperbolic equations). Amajor development of theDGmethod
was carried out by Cockburn et al. in a series of papers [4,3,2,1,5], in which they established a framework to
easily solve nonlinear time dependent hyperbolic conservation laws (1.1) using explicit, nonlinearly stable high
order Runge–Kutta time discretizations [20] and DG discretization in space with exact or approximate Rie-
mann solvers as interface fluxes and total variation bounded (TVB) limiter [18] to achieve non-oscillatory
properties for strong shocks. These schemes are termed RKDGmethods. The RKDGmethod is a high order
finite elementmethod for solving hyperbolic conservation laws using also ideas fromhigh resolution finite vol-
ume schemes, such as the exact or approximate Riemann solvers as numerical fluxes, TVDRunge–Kutta time
discretizations, and limiters. RKDGmethods have the advantage of flexibility in handling complicated geom-
etry, h–p adaptivity, and efficiency of parallel implementation and has been used successfully in many appli-
cations. We refer to the recent special issue [7] for information on the recent development of DG methods.

An important component of the RKDG methods for solving conservation laws (1.1) is the numerical
flux, based on exact or approximate Riemann solvers, which is borrowed from finite difference and finite
volume methodologies. In most of the RKDG papers in the literature, the Lax–Friedrichs (LF) numerical
flux is used due to its simplicity. However, there exist many other numerical fluxes based on various approx-
imate Riemann solvers in the literature, which could also be used in the context of RKDG methods. The
Godunov flux [9,24] is based on the exactRiemann solver, which has the smallest numerical viscosity among
all monotone fluxes for the scalar case but could be very costly to evaluate in the system case, as it often
lacks explicit formulas and relies on iterative procedures for its evaluation. The Engquist–Osher (EO) flux
[8,14,24] for the scalar case and its extension to systems (often referred to as the Osher–Solomon flux [14])
are smoother than the Godunov flux with an almost as small numerical viscosity, and have the advantage of
explicit formulas for the scalar case and for some well known physical systems, such as the Euler equations
of compressible gas dynamics. The derivation of the EO flux depends on the integration in the phase space.
Because of the existence of the explicit formulas, the evaluation of the EO flux is less costly than the Godu-
nov flux, but is still more costly than other simpler approximate Riemann solvers. In 1983, Harten, Lax and
van Leer presented the HLL flux [11] based on the approximate Riemann solver with only three constant
states separated by two waves. The evaluation of the HLL flux is simple and fast, however it has the short-
coming of poor resolution for contact discontinuities, shear waves and material interfaces. In [26], a mod-
ification of the HLL flux, often referred to as the HLLC flux, was presented to overcome this defect of the
HLL flux by restoring the missing contact and shear waves. The fluxes mentioned above are all two point,
first order monotone fluxes. These fluxes have the form f̂ ðu�; uþÞ and are consistent with the physical flux in
the sense that f̂ ðu; uÞ ¼ f ðuÞ. There are also certain second order TVD (total variation diminishing) fluxes,
which may depend on more than two points, e.g. f̂ ðul; u�; uþ; urÞ, but have the following essentially two point
property: f̂ ðul; u; u; urÞ ¼ f ðuÞ for any ul and ur, which can also be used as numerical fluxes for the RKDG
methods. An example of the essentially two point TVD fluxes is the flux limiter centered (FLIC) flux [24],
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which combines a low order monotone flux and a high order flux with a flux limiter to guarantee the TVD
property. Recently, Titarev and Toro initialized an approach to use second order essentially two point TVD
fluxes [23], and the MUSTA and HLLC fluxes [22], instead of the first order monotone fluxes, as building
blocks for Godunov type finite volume schemes. Their numerical results show an improvement, sometimes
dramatic, on numerical resolutions when such fluxes are used.

In this paper, we systematically study and compare the performance of the RKDG method based on dif-
ferent numerical fluxes, with the objective of obtaining better performance by choosing suitable numerical
fluxes.We review and describe the details of the fluxes under consideration in Section 2, and present extensive
numerical experiments in Section 3 to compare their performance. Concluding remarks are given in Section 4.
2. Review and implementation of the numerical fluxes for the RKDG methods

In this section, we review the numerical fluxes under consideration for the RKDGmethods. We start with
the description of the RKDG method in the one dimensional case and use the notations in [3], however we
emphasize that the procedure describedbelowdoes not dependon the specific basis chosen for the polynomials
and works also in multi-dimensions. We would like to solve the one dimensional scalar conservation law
ut þ f ðuÞx ¼ 0;

uðx; 0Þ ¼ u0ðxÞ.

�
ð2:1Þ
The computational domain is divided into N cells with boundary points 0 ¼ x1
2
< x3

2
< � � � < xNþ1

2
¼ L. The

points xi are the centers of the cells I i ¼ ½xi�1
2
; xiþ1

2
�, and we denote the cell sizes by Dxi ¼ xiþ1

2
� xi�1

2
and the

maximum cell size by h = maxiDxi. The solution as well as the test function space is given by
V k

h ¼ fp : pjI i 2 PkðI iÞg, where Pk(Ii) is the space of polynomials of degree 6k on the cell Ii. We adopt a
local orthogonal basis over Ii, fvðiÞl ðxÞ; l ¼ 0; 1; . . . ; kg, namely the scaled Legendre polynomials:
vðiÞ0 ðxÞ ¼ 1; vðiÞ1 ðxÞ ¼ x� xi
Dxi=2

; vðiÞ2 ðxÞ ¼ x� xi
Dxi=2

� �2

� 1

3
; . . .
Then the numerical solution uh(x,t) in the space V k
h can be written as:
uhðx; tÞ ¼
Xk
l¼0

uðlÞi ðtÞvðiÞl ðxÞ; for x 2 I i ð2:2Þ
and the degrees of freedom uðlÞi ðtÞ are the moments defined by
uðlÞi ðtÞ ¼ 1

al

Z
I i

uhðx; tÞvðiÞl ðxÞdx; l ¼ 0; 1; . . . ; k;
where al ¼
R
Ii
ðvðiÞl ðxÞÞ2 dx are the normalization constants since the basis is not orthonormal. In order to

determine the approximate solution, we evolve the degrees of freedom uðlÞi :
d

dt
uðlÞi þ 1

al
�
Z
Ii

f ðuhðx; tÞÞ d

dx
vðiÞl ðxÞdxþ f̂ ðu�iþ1=2; u

þ
iþ1=2Þv

ðiÞ
l ðxiþ1=2Þ � f̂ ðu�i�1=2; u

þ
i�1=2Þv

ðiÞ
l ðxi�1=2Þ

� �
¼ 0; l ¼ 0; 1; . . . ; k; ð2:3Þ
where u�iþ1=2 ¼ uhðx�iþ1=2; tÞ are the left and right limits of the discontinuous solution uh at the cell interface
xi+1/2, and f̂ ðu�; uþÞ is the numerical flux based on an exact or approximate Riemann solver, which will
be the main focus of discussion for this paper. The semidiscrete scheme (2.3) is discretized in time by a
nonlinearly stable Runge–Kutta time discretization, e.g. the third order version [20]. The integral term in
(2.3) can be computed either exactly or by a suitable numerical quadrature accurate to at least O(hk+l+2).

In order to maintain stability and non-oscillatory property of the RKDG method for solving conserva-
tion laws (1.1) with strong shocks, a nonlinear limiter must be applied. In the numerical experiments in this
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paper, we will use the shock detection technique by Krivodonova et al. in [13] to detect troubled-cells (we
refer to [16] for a detailed investigation of various troubled-cell indicators), where a WENO limiter devel-
oped in [15] will be used for the reconstruction of first and higher order moments of the polynomials inside
those troubled cells. We refer to [15] for the details of this WENO reconstruction and will not repeat it here.
For the case of hyperbolic systems, to identify the troubled cells, we could either use a component-wise indi-
cator or a characteristic one. In this paper, we will use the component-wise indicator. For both the one
dimensional and the two dimensional Euler equations, we use only the components of density and energy
as indicator variables. We emphasize that the component-wise strategy is used only to identity troubled
cells. Once these cells are identified, the WENO reconstructions in them are performed in local character-
istic directions. We again refer to [15] and to [19] for more details of the reconstruction.

We now review the two point or essentially two point numerical fluxes under consideration. Numerical
experiments to compare their performance for the RKDG method will be given in next section.

For the one dimensional system case, we will consider Euler equations of compressible gas dynamics,
namely (2.1) with
u ¼ ðq; qv;EÞT; f ðuÞ ¼ ðqv; qv2 þ p; vðE þ pÞÞT; ð2:4Þ

where q is the density, v is the velocity, E is the total energy, p is the pressure, which is related to the total
energy by E ¼ p

c�1
þ 1

2
qv2 with c = 1.4 for air. We will also use the sound speed c ¼

ffiffiffiffiffiffiffiffiffiffi
cp=q

p
in the definition

of some of the numerical fluxes.

1. The Lax–Friedrichs (LF) flux and the local LF (LLF) flux. The LF flux is one of the simplest and most
widely used building blocks for the RKDG method and high order finite volume methods such as the
ENO and WENO schemes. However, the numerical viscosity of the LF flux is also the largest among
monotone fluxes for scalar problems. The LF or the LLF flux is defined by
f̂
LFðu�; uþÞ ¼ 1

2
½ðf ðu�Þ þ f ðuþÞÞ � aðuþ � u�Þ�; ð2:5Þ

where for the LF flux, a is taken as an upper bound over the whole line for jf 0(u)j in the scalar case, or for
the absolute value of eigenvalues of the Jacobian for the system case, and for the LLF flux a is taken as
an upper bound between u� and u+.

2. The Godunov flux. The Godunov flux [9,24] is based on the exact Riemann solver, which has the smallest
numerical viscosity among all monotone fluxes for the scalar case but could be very costly to evaluate in
the system case, as it often lacks explicit formulas and relies on iterative procedures for its evaluation.
The Godunov flux is defined as
f̂
Gðu�; uþÞ ¼ f ðuð0ÞÞ;

where u(0) is the solution of the local Riemann problem at x/t = 0 (the solution of the local Riemann
problem is a function of the single variable x/t only due to self-similarity), i.e. the exact solution to
the conservation law (2.1) with the initial condition:

uðx; 0Þ ¼
u� for x 6 0;

uþ for x > 0.

�

For the scalar case, the Godunov flux can be expressed in a closed form as

f̂
Gðu�; uþÞ ¼

min
u�6u6uþ

f ðuÞ if u� 6 uþ;

max
uþ6u6u�

f ðuÞ if u� > uþ.

8<
: ð2:6Þ

However, for most nonlinear systems, the Godunov flux cannot be expressed in a closed form. Its
evaluation would in general require an iterative procedure. We refer to [24] and the references therein
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for the details of the exact Riemann solver for systems in applications, such as the Euler equations (2.4),
which are needed for the evaluation of the Godunov flux for such systems.

3. The Engquist–Osher (EO) flux and the Osher–Solomon flux [8,14]. The Engquist–Osher (EO) flux [8] for
the scalar case and its extension to systems (often referred to as the Osher–Solomon flux [14]) are
smoother than the Godunov flux with an almost as small numerical viscosity, and have the advantage
of explicit formulas for the scalar case and for some well known physical systems, such as the Euler equa-
tions of compressible gas dynamics. For the scalar case the EO flux is given by !
f̂
EOðu�; uþÞ ¼ 1

2
f ðu�Þ þ f ðuþÞ �

Z uþ

u�
jf 0ðuÞjdu . ð2:7Þ

For the system case, the explicit formulas for the Osher–Solomon flux for the Euler equations (2.4) is
given as follows [14]: First we compute intermediate variables based on u±:

q1 ¼ qþ ðc� 1Þðvþ � v�Þ=2þ cþ þ c�

cþð1þ ðp�=pþÞ1=2cðq�=qþÞ�1=2Þ

 !2=ðc�1Þ

;

q2 ¼ q� ðc� 1Þðvþ � v�Þ=2þ cþ þ c�

c�ð1þ ðpþ=p�Þ1=2cðqþ=q�Þ�1=2Þ

 !2=ðc�1Þ

;

p1 ¼ p2 ¼ p�
q�

q2

� ��c

; v1 ¼ v2 ¼ v� � 2

c� 1
c� �

ffiffiffiffiffiffiffi
cp2
q2

r� �
;

�q1 ¼ qþ ðc� 1Þvþ þ 2cþ

ðcþ 1Þcþ

� �2=ðc�1Þ

; �q2 ¼ q� �ðc� 1Þv� þ 2c�

ðcþ 1Þc�

� �2=ðc�1Þ

;

�p1 ¼ pþð�q1=q
þÞc; �p2 ¼ p�ð�q2=q

�Þc;

�v1 ¼ vþ þ 2

c� 1
ðcþ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�p1= �q1

p
Þ; �v2 ¼ v� � 2

c� 1
ðc� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�p2= �q2

p
Þ.

The Osher–Solomon flux is then still given by (2.7), with the integral computed as a sum of three parts
based on three characteristic fields:Z uþ

u�
jf 0ðuÞjdu ¼

Z
C1

þ
Z
C2

þ
Z
C3

ðf 0ðuÞþ � f 0ðuÞ�Þdu; ð2:8Þ

where

Z
C1

f 0ðuÞþ du ¼ f ðuÞ

uþ if qþ < �q1;

�u1 if qþ P �q1;

u1 if q1 < �q1;

�u1 if q1 P �q1:

�����������
;

Z
C1

f 0ðuÞ� du ¼ f ðuÞ

uþ if qþ P �q1;

�u1 if qþ < �q1;

u1 if q1 P �q1;

�u1 if q1 < �q1:

�����������
Z
C2

ðf 0ðuÞþ � f 0ðuÞ�Þdu ¼ ðq1 � q2Þ jv1j
1

v1
v21=2

0
B@

1
CA:

Z
C3

f 0ðuÞþ du ¼ f ðuÞ

u2 if q2 > �q2;

�u2 if q2 6 �q2;

u� if q� > �q2;

�u2 if q�
6 �q2:

�����������
;

Z
C3

f 0ðuÞ� du ¼ f ðuÞ

u2 if q2 6 �q2;

�u2 if q2 > �q2;

u� if q�
6 �q2;

�u2 if q� > �q2:

�����������
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4. The Harten–Lax–van Leer (HLL) flux [11,24]. The HLL flux [11] is based on the approximate Riemann
solver with only three constant states separated by two waves. The HLL flux for the Euler equations
(2.4) is given by
f̂
HLLðu�; uþÞ ¼

f ðu�Þ if 0 6 s�;
sþf ðu�Þ�s�f ðuþÞþs�sþðuþ�u�Þ

sþ�s� if s� 6 0 6 sþ;

f ðuþÞ if sþ 6 0;

8><
>: ð2:9Þ

where the lower and upper bounds of the wave speed, s� and s+, must be estimated. We use the pressure-
velocity estimates [24]

s� ¼ v� � c�q�; s� ¼ v�; sþ ¼ vþ þ cþqþ; ð2:10Þ
where, for K = ±,

qK ¼
1 if p� 6 pK ;

ð1þ cþ1
2c ðp�=pK � 1ÞÞ1=2 if p� > pK ;

(

with

p� ¼ 1

2
ðp� þ pþÞ � 1

2
ðvþ � v�Þ�q�c; v� ¼ 1

2
ðv� þ vþÞ � pþ � p�

2�q�c
;

and

�q ¼ 1

2
ðq� þ qþÞ; �c ¼ 1

2
ðc� þ cþÞ.

5. The HLLC flux – a modification of the HLL flux [26,24]. The HLLC flux is a modification of the HLL
flux, whereby the missing contact and shear waves are restored. The HLLC flux for the Euler equations
(2.4) is given by
f̂
HLLCðu�; uþÞ ¼

f ðu�Þ if 6 s�;

f ðu�Þ þ s�ðu�� � u�Þ if s� 6 0 6 s�;

f ðuþÞ þ sþðu�þ � uþÞ if s� 6 0 6 sþ;

f ðuþÞ if sþ 6 0;

8>>><
>>>:

ð2:11Þ

where, for K = ±,

u�K ¼ qK s
K � vK

sK � s�

1

s�

EK

qK þ ðs� � vKÞ½s� þ pK

qK ðsK�vK Þ�

2
64

3
75. ð2:12Þ

The definitions of s�, s* and s+ are given in (2.10).
6. The first-order centered (FORCE) flux [24]. The FORCE flux is given by
f̂
FORCEðu�; uþÞ ¼ 1

2
ðf̂ LFðu�; uþÞ þ f̂

Rðu�; uþÞÞ; ð2:13Þ

where f̂
R
is the second order Richtmyer flux given by

f̂
Rðu�; uþÞ ¼ f ðu�Þ; u� ¼ 1

2
u� þ uþ � Dt

Dx
ðf ðuþÞ � f ðu�ÞÞ

� �
. ð2:14Þ

This flux is the average of the LF flux and the second order Richtmyer flux, hence its viscosity is smaller
than that of the LF flux.
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7. A flux limiter centered (FLIC) flux [24]. The general flux limiter approach combines a low order mono-
tone flux and a high order flux. The FLIC flux we use has the FORCE flux as the low order flux and the
Richtmyer flux as the high order flux:
f̂
FLICðu�; uþÞ ¼ f̂

FORCEðu�; uþÞ þ /iþ1=2½f̂
Rðu�; uþÞ � f̂

FORCEðu�; uþÞ�; ð2:15Þ

where /i+1/2 is a flux limiter. There are several possible choices for the flux limiter such as the superbee,
van Leer and the minbee flux limiters. Following [24,22], for the Euler equation we use the following
procedure: we first define q = E (total energy) and set

r�iþ1=2 ¼
Dqi�1=2

Dqiþ1=2

; rþiþ1=2 ¼
Dqiþ3=2

Dqiþ1=2

;

where Dqi�1=2 ¼ �qi � �qi�1, and �qi is the cell average of q on the cell Ii. We then compute a single flux
limiter

/iþ1=2 ¼ minð/ðr�iþ1=2Þ;/ðrþiþ1=2ÞÞ;

and apply it to all components of the flux. In this paper, we use the minbee limiter:

/ðrÞ ¼
0; r 6 0;

r; 0 6 r 6 1;

1; r P 1.

8><
>:

Clearly, if u� = u+ = u, then f̂
FLICðu; uÞ ¼ f ðuÞ. Hence even if the FLIC flux depends on more than the

two points u� and u+ through the limiter /i+1/2 and we are abusing notations when we denote it by

f̂
FLICðu�; uþÞ, it is indeed an essentially two point flux as defined before, hence can be used as a flux

for the RKDG method.
8. The multi-stage predictor-corrector (MUSTA) flux [25]. The MUSTA flux is a multi-stage predictor-

corrector flux. Following [22] we use the FORCE flux as the predictor flux. The procedure to evaluate
a L-stage MUSTA flux can be described as following: first we set u�0 ¼ u� and uþ0 ¼ uþ for the initial
stage l = 0, then we perform the following steps:

(a) Compute the FORCE flux f̂
FORCE

l ¼ f̂
FORCEðu�l ; uþl Þ on the data at the stage l.

(b) If the desired number of total stages L has been reached (that is l = L), then the computation of the

MUSTA flux is complete and the final flux is given by f̂
MUSTAðu�; uþÞ ¼ f̂

FORCE

l . Otherwise, continue
to compute the values for the next stage using:
u�lþ1 ¼ u�l � Dt
Dx

ðf̂ FORCE

l � f ðu�l ÞÞ; uþlþ1 ¼ uþl � Dt
Dx

ðf ðuþl Þ � f̂
FORCE

l Þ;

and proceed back to step (a).
In this paper, we use L = 2 as suggested in [22].

In next section, we will use these fluxes to perform numerical experiments.
3. Numerical results

In this section, we perform extensive numerical experiments to compare the performance of the RKDG
method based on the eight different fluxes outlined in the previous section. The detailed numerical study is
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mainly performed for the one dimensional system case, addressing the issues of CPU cost, accuracy,
non-oscillatory property, and resolution of discontinuities. Numerical tests are also performed for two
dimensional systems. In all the figures, we plot only the cell averages of the numerical solution. For
CPU time comparison, all the computations are performed on a Compaq Digital personal workstation,
600 au alpha-599 MHZ with 256 MB ram. We denote the RKDG scheme with the flux ‘‘X’’ as RKDG-
X, such as RKDG-LF for the RKDG scheme with the LF flux. In our numerical experiments, the CFL
numbers are taken as 0.3, 0.18 and 0.1 for k = 1, k = 2 and k = 3 (second, third and fourth order accuracy),
respectively.

Example 3.1. We solve the one dimensional nonlinear system of Euler equations (2.4). The initial
condition is set to be q(x, 0) = 1 + 0.2sin(px), v(x,0) = 1, p(x, 0) = 1, with a 2-periodic boundary condition.
The exact solution is q(x, t) = 1 + 0.2sin(p(x � t)), v(x,t) = 1, p(x,t) = 1. We compute the solution up to
t = 2. In Table 1, we provide a CPU time comparison for the RKDG schemes with different fluxes. The
numerical errors and the orders of accuracy for the density q, and ratios of the numerical errors for
comparison with the RKDG-LF scheme are shown in Tables 2–4.

We can see that the RKDG-LF scheme costs the least CPU time for each of the cases k = 1,2 and 3, but
at the same it has the largest numerical errors.

On the CPU time, the RKDG-G and RKDG-EO schemes cost about twice that of the RKDG-LF
scheme, the RKDG-HLL and RKDG-HLLC schemes cost about 10–20% more than that of the
RKDG-LF scheme, the RKDG-FORCE and RKDG-FLIC schemes cost about the same as that of
the RKDG-LF scheme, and the RKDG-MUSTA scheme costs about 15–25% more than that of the
RKDG-LF scheme. Of course, this CPU time comparison depends on our specific implementation of these
fluxes and also on the specific test case (for the Godunov flux which has an iteration procedure and may
converge with different number of steps for different solutions), but it does give the correct ball-park of
the relative CPU costs of the RKDG method using these different fluxes.

On the numerical errors, for the case of k = 1 and 3, the L1 and L1 errors of all other schemes for
the same meshes are about 40% and 50% of that by the RKDG-LF scheme, except for the RKDG-
FLIC scheme, which has errors about 80% of that by the RKDG-LF scheme. For the case of
k = 2, however, the RKDG-FLIC scheme has the smallest errors among all the schemes, which is about
half of that by the RKDG-LF scheme. The errors by the other schemes for the k = 2 case are about
70% of that by the RKDG-LF scheme. This indicates that we have to be cautious when discussing
about the accuracy advantage of various fluxes as this may depend on the order of accuracy of the
scheme.

We can also see that all schemes achieve their designed orders of accuracy, as expected.

Example 3.2. We repeat the numerical experiments of the previous example using the following Riemann
initial condition for the Lax problem:
Table
CPU t

k

1
2
3

Total C
ðq; v; pÞ ¼ ð0.445; 0.698; 3.528Þ for x 6 0; ðq; v; pÞ ¼ ð0.5; 0; 0.571Þ for x > 0.
1
ime (in seconds) for the RKDG methods with different fluxes, for the accuracy test problem

LF G EO HLL HLLC FORCE FLIC MUSTA

4.31 10.89 9.34 5.12 5.24 4.34 4.51 5.55
11.36 22.83 19.71 12.53 12.70 11.40 11.51 13.45
111.16 191.70 171.50 120.70 120.84 112.24 113.37 127.65

PU time for N = 10, 20, 40, 80 and 160 cells is recorded.



Table 2
Euler equations, q(x, 0) = 1 + 0.2sin(px), v(x,0) = 1, p(x,0) = 1, using N equally spaced cells with different fluxes, t = 2, L1 and L1
errors of density q, k = 1

N Flux L1 error L1 order Error ratio L1 error L1 order Error ratio

10 LF 8.4968E�03 1.0000 2.4595E�02 1.0000
G 3.6256E�03 0.4267 8.2959E�03 0.3373
EO 3.6256E�03 0.4267 8.2959E�03 0.3373
HLL 3.3024E�03 0.3887 8.4497E�03 0.3435
HLLC 3.6256E�03 0.4267 8.2959E�03 0.3373
FORCE 3.0171E�03 0.3551 8.0013E�03 0.3253
FLIC 5.6267E�03 0.6622 1.3839E�02 0.5627
MUSTA 3.3987E�03 0.4000 8.1473E�03 0.3313

20 LF 1.9328E�03 2.1362 1.0000 5.4403E�03 2.1766 1.0000
G 7.6077E�04 2.2527 0.3936 2.6850E�03 1.6275 0.4935
EO 7.6077E�04 2.2527 0.3936 2.6850E�03 1.6275 0.4935
HLL 6.7937E�04 2.2812 0.3515 2.5678E�03 1.7183 0.4720
HLLC 7.6077E�04 2.2527 0.3936 2.6850E�03 1.6275 0.4935
FORCE 6.1231E�04 2.3008 0.3168 2.4096E�03 1.7315 0.4429
FLIC 1.4035E�03 2.0033 0.7262 3.8455E�03 1.8475 0.7069
MUSTA 7.0238E�04 2.2747 0.3634 2.5642E�03 1.6678 0.4713

40 LF 4.4660E�04 2.1136 1.0000 1.5222E�03 1.8376 1.0000
G 1.7313E�04 2.1356 0.3877 7.5026E�04 1.8394 0.4929
EO 1.7313E�04 2.1356 0.3877 7.5026E�04 1.8394 0.4929
HLL 1.5419E�04 2.1395 0.3453 7.2005E�04 1.8344 0.4730
HLLC 1.7313E�04 2.1356 0.3877 7.5026E�04 1.8394 0.4929
FORCE 1.4041E�04 2.1246 0.3144 6.5719E�04 1.8744 0.4317
FLIC 3.4300E�04 2.0327 0.7680 1.1858E�03 1.6973 0.7790
MUSTA 1.5991E�04 2.1350 0.3581 7.1467E�04 1.8432 0.4695

80 LF 1.0799E�04 2.0481 1.0000 3.9930E�04 1.9306 1.0000
G 4.1311E�05 2.0673 0.3826 1.9684E�04 1.9304 0.4930
EO 4.1311E�05 2.0673 0.3826 1.9684E�04 1.9304 0.4930
HLL 3.6862E�05 2.0645 0.3414 1.8922E�04 1.9280 0.4739
HLLC 4.1311E�05 2.0673 0.3826 1.9684E�04 1.9304 0.4930
FORCE 3.3860E�05 2.0520 0.3136 1.7074E�04 1.9445 0.4276
FLIC 8.3990E�05 2.0299 0.7778 3.2199E�04 1.8808 0.8064
MUSTA 3.8043E�05 2.0716 0.3523 1.8644E�04 1.9386 0.4669
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This is a demanding test case in terms of controlling spurious oscillations. The computational domain is
[�5,5] with 200 cells, and the final time is t = 1.3. In Figs. 1–3, the computed densities q are plotted against
the exact solution and against the numerical solution computed by the RKDG-LF scheme on the same
mesh, zoomed at the region 1 6 x 6 4 which contains the contact discontinuity and the shock.

From Figs. 1–3, we can see that the results computed by the RKDG-G, RKDG-EO and RKDG-HLLC
schemes are slightly better than that computed by the RKDG-LF scheme, in terms of the resolution of the
discontinuities, and the results computed by all other schemes are similar to that computed by the RKDG-
LF scheme.

Example 3.3. A higher order scheme would show its advantage when the solution contains both shocks
and complex smooth region structures. A typical example for this is the problem of shock interaction with
entropy waves [21]. We solve the Euler equations (2.4) with a moving Mach = 3 shock interacting with sine
waves in density, i.e. initially



Table 3
Euler equations, q(x, 0) = 1 + 0.2sin(px), v(x,0) = 1, p(x,0) = 1, using N equally spaced cells with different fluxes, t = 2, L1 and L1
errors of density q, k = 2

N Flux L1 error L1 order Error ratio L1 error L1 order Error ratio

10 LF 1.7763E�04 1.0000 1.1382E�03 1.0000
G 1.3013E�04 0.7326 7.8672E�04 0.6912
EO 1.3013E�04 0.7326 7.8672E�04 0.6912
HLL 1.4522E�04 0.8175 8.5161E�04 0.7482
HLLC 1.3013E�04 0.7326 7.8672E�04 0.6912
FORCE 1.6055E�04 0.9038 9.1115E�04 0.8005
FLIC 1.0245E�04 0.5767 6.1017E�04 0.5361
MUSTA 1.4157E�04 0.7970 8.3600E�04 0.7345

20 LF 2.2682E�05 2.9692 1.0000 1.3684E�04 3.0562 1.0000
G 1.6089E�05 3.0158 0.7093 1.0213E�04 2.9454 0.7464
EO 1.6089E�05 3.0158 0.7093 1.0213E�04 2.9454 0.7464
HLL 1.8110E�05 3.0034 0.7984 1.1146E�04 2.9336 0.8146
HLLC 1.6089E�05 3.0158 0.7093 1.0213E�04 2.9454 0.7464
FORCE 2.0259E�05 2.9864 0.8932 1.2082E�04 2.9149 0.8829
FLIC 1.2322E�05 3.0556 0.5432 7.4390E�05 3.0360 0.5436
MUSTA 1.7638E�05 3.0047 0.7776 1.0908E�04 2.9381 0.7972

40 LF 2.9794E�06 2.9285 1.0000 1.8952E�05 2.8520 1.0000
G 1.9979E�06 3.0095 0.6706 1.2877E�05 2.9876 0.6794
EO 1.9979E�06 3.0095 0.6706 1.2877E�05 2.9876 0.6794
HLL 2.2603E�06 3.0022 0.7586 1.4136E�05 2.9791 0.7459
HLLC 1.9979E�06 3.0095 0.6706 1.2877E�05 2.9876 0.6794
FORCE 2.5415E�06 2.9948 0.8530 1.5330E�05 2.9784 0.8089
FLIC 1.5203E�06 3.0188 0.5103 9.2356E�06 3.0098 0.4873
MUSTA 2.1974E�06 3.0048 0.7375 1.3773E�05 2.9855 0.7267

80 LF 3.9343E�07 2.9209 1.0000 2.4632E�06 2.9437 1.0000
G 2.4929E�07 3.0026 0.6336 1.6132E�06 2.9967 0.6549
EO 2.4929E�07 3.0026 0.6336 1.6132E�06 2.9968 0.6549
HLL 2.8235E�07 3.0009 0.7177 1.7690E�06 2.9984 0.7182
HLLC 2.4929E�07 3.0026 0.6336 1.6132E�06 2.9968 0.6549
FORCE 3.1783E�07 2.9993 0.8079 1.9237E�06 2.9944 0.7810
FLIC 1.8934E�07 3.0053 0.4812 1.1524E�06 3.0026 0.4678
MUSTA 2.7448E�07 3.0011 0.6977 1.7267E�06 2.9958 0.7010
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ðq; v; pÞ ¼
ð3.857143; 2.629369; 10.333333Þ for x < �4;

ð1þ e sinð5xÞ; 0; 1Þ for x P �4.

�

Here, we take e = 0.2. The computational domain is [�5,5] with 300 cells, the final time is t = 1.8. In Figs.
4–6, the computed densities q are plotted against the reference ‘‘exact’’ solution, computed using a fifth or-
der WENO scheme [12] using 2000 grid points, and against the solution computed by the RKDG-LF
scheme on the same mesh, zoomed at the region 0.5 6 x 6 2.5 which contains the complicated wave pattern
in the smooth part of the solution.

Similar to the previous two examples, we can observe an improvement of the resolution for the compli-
cated wave pattern in this example for all (other) schemes over the RKDG-LF scheme. The performance of
all the other schemes are similar for this example.



Table 4
Euler equations, q(x, 0) = 1 + 0.2sin(px), v(x,0) = 1, p(x,0) = 1, using N equally spaced cells with different fluxes, t = 2, L1 and L1
errors of density q, k = 3

N Flux L1 error L1 order Error ratio L1 error L1 order Error ratio

10 LF 1.3960E�05 1.0000 7.4910E�05 1.0000
G 5.0388E�06 0.3610 3.6676E�05 0.4896
EO 5.0388E�06 0.3610 3.6676E�05 0.4896
HLL 4.7196E�06 0.3381 3.5570E�05 0.4748
HLLC 5.0388E�06 0.3610 3.6676E�05 0.4896
FORCE 4.5041E�06 0.3227 3.2429E�05 0.4329
FLIC 8.2216E�06 0.5889 4.8367E�05 0.6457
MUSTA 4.7486E�06 0.3402 3.4585E�05 0.4617

20 LF 8.7938E�07 3.9886 1.0000 5.3615E�06 3.8045 1.0000
G 3.1134E�07 4.0165 0.3540 2.3064E�06 3.9911 0.4302
EO 3.1134E�07 4.0165 0.3540 2.3064E�06 3.9911 0.4302
HLL 2.8769E�07 4.0361 0.3272 2.2228E�06 4.0002 0.4146
HLLC 3.1134E�07 4.0165 0.3540 2.3064E�06 3.9911 0.4302
FORCE 2.7194E�07 4.0499 0.3092 2.0056E�06 4.0152 0.3741
FLIC 5.8630E�07 3.8097 0.6667 3.6178E�06 3.7408 0.6748
MUSTA 2.8878E�07 4.0395 0.3284 2.1466E�06 4.0100 0.4004

40 LF 4.9053E�08 4.1641 1.0000 3.0392E�07 4.1409 1.0000
G 1.9400E�08 4.0044 0.3955 1.4535E�07 3.9881 0.4782
EO 1.9401E�08 4.0043 0.3955 1.4533E�07 3.9882 0.4782
HLL 1.7868E�08 4.0091 0.3643 1.3999E�07 3.9890 0.4606
HLLC 1.9401E�08 4.0043 0.3955 1.4533E�07 3.9882 0.4782
FORCE 1.6859E�08 4.0117 0.3437 1.2548E�07 3.9985 0.4129
FLIC 3.8059E�08 3.9453 0.7759 2.3856E�07 3.9227 0.7849
MUSTA 1.7933E�08 4.0093 0.3656 1.3497E�07 3.9913 0.4441

80 LF 3.0871E�09 3.9900 1.0000 1.8645E�08 4.0268 1.0000
G 1.2104E�09 4.0026 0.3921 9.1348E�09 3.9920 0.4899
EO 1.2117E�09 4.0011 0.3925 9.1023E�09 3.9970 0.4882
HLL 1.1148E�09 4.0025 0.3611 8.7668E�09 3.9971 0.4702
HLLC 1.2117E�09 4.0011 0.3925 9.1023E�09 3.9970 0.4882
FORCE 1.0516E�09 4.0030 0.3406 7.8457E�09 3.9994 0.4208
FLIC 2.4004E�09 3.9869 0.7775 1.5130E�08 3.9789 0.8115
MUSTA 1.1186E�09 4.0029 0.3623 8.4466E�09 3.9982 0.4530
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Example 3.4. We consider the interaction of blast waves of the Euler equation (2.4) with the initial
condition:
ðq; v; pÞ ¼
ð1; 0; 1000Þ for 0 6 x < 0.1;

ð1; 0; 0.01Þ for 0.1 6 x < 0.9;

ð1; 0; 100Þ for 0.9 6 x.

8><
>:
A reflecting boundary condition is applied to both ends. See [27,10]. The computational domain is [0, 1]
with 400 cells. The final time is t = 0.038. In Figs. 7–9, the computed densities q are plotted against the ref-
erence ‘‘exact’’ solution, computed using a fifth order WENO scheme [12] using 2000 grid points, and
against the solution computed by the RKDG-LF scheme on the same mesh, zoomed at the region
0.53 6 x 6 0.88 which contains the contact discontinuities and shocks in the solution.
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Fig. 1. Lax problem. t = 1.3. RKDG with different fluxes, k = 1, 200 cells. Density. Solid lines: the exact solution; hollow squares: the results computed by the RKDG-
LF scheme; plus symbols: results computed by the RKDG-G (top left), RKDG-EO (top right), RKDG-HLL (middle left), RKDG-HLLC (middle right), RKDG-
FORCE (bottom left), RKDG-FLIC (bottom middle) and RKDG-MUSTA (bottom right) schemes.
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Fig. 2. Lax problem. t = 1.3. RKDG with different fluxes, k = 2, 200 cells. Density. Solid lines: the exact solution; hollow squares: the results computed by the RKDG-LF
scheme; plus symbols: results computed by the RKDG-G (top left), RKDG-EO (top right), RKDG-HLL (middle left), RKDG-HLLC (middle right), RKDG-FORCE
(bottom left), RKDG-FLIC (bottom middle) and RKDG-MUSTA (bottom right) schemes.
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Fig. 3. Lax problem. t = 1.3. RKDG with different fluxes, k = 3, 200 cells. Density. Solid lines: the exact solution; hollow squares: the results computed by the RKDG-
LF scheme; plus symbols: results computed by the RKDG-G (top left), RKDG-EO (top right), RKDG-HLL (middle left), RKDG-HLLC (middle right), RKDG-
FORCE (bottom left), RKDG-FLIC (bottom middle) and RKDG-MUSTA (bottom right) schemes.
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Fig. 4. The shock interaction with entropy waves problem. t = 1.8. RKDG with different fluxes, k = 1, 300 cells. Density. Solid lines: the ‘‘exact’’ reference solution;
hollow squares: the results computed by the RKDG-LF scheme; plus symbols: results computed by the RKDG-G (top left), RKDG-EO (top right), RKDG-HLL
(middle left), RKDG-HLLC (middle right), RKDG-FORCE (bottom left), RKDG-FLIC (bottom middle) and RKDG-MUSTA (bottom right) schemes.
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Fig. 5. The shock interaction with entropy waves problem. t = 1.8. RKDG with different fluxes, k = 2, 300 cells. Density. Solid lines: the ‘‘exact’’ reference solution;
hollow squares: the results computed by the RKDG-LF scheme; plus symbols: results computed by the RKDG-G (top left), RKDG-EO (top right), RKDG-HLL
(middle left), RKDG-HLLC (middle right), RKDG-FORCE (bottom left), RKDG-FLIC (bottom middle) and RKDG-MUSTA (bottom right) schemes.
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Fig. 6. The shock interaction with entropy waves problem. t = 1.8. RKDG with different fluxes, k = 3, 300 cells. Density. Solid lines: the ‘‘exact’’ reference solution;
hollow squares: the results computed by the RKDG-LF scheme; plus symbols: results computed by the RKDG-G (top left), RKDG-EO (top right), RKDG-HLL
(middle left), RKDG-HLLC (middle right), RKDG-FORCE (bottom left), RKDG-FLIC (bottom middle) and RKDG-MUSTA (bottom right) schemes.
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Fig. 7. Blast wave problem. t = 0.038. RKDG with different fluxes, k = 1, 400 cells. Density. Solid lines: the ‘‘exact’’ reference solution; hollow squares: the results
computed by the RKDG-LF scheme; plus symbols: results computed by the RKDG-G (top left), RKDG-EO (top right), RKDG-HLL (middle left), RKDG-HLLC
(middle right), RKDG-FORCE (bottom left), RKDG-FLIC (bottom middle) and RKDG-MUSTA (bottom right) schemes.
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Fig. 8. Blast wave problem. t = 0.038. RKDG with different fluxes, k = 2, 400 cells. Density. Solid lines: the ‘‘exact’’ reference solution; hollow squares: the results
computed by the RKDG-LF scheme; plus symbols: results computed by the RKDG-G (top left), RKDG-EO (top right), RKDG-HLL (middle left), RKDG-HLLC
(middle right), RKDG-FORCE (bottom left), RKDG-FLIC (bottom middle) and RKDG-MUSTA (bottom right) schemes.

558
J
.
Q
iu

et
a
l.
/
J
o
u
rn
a
l
o
f
C
o
m
p
u
ta
tio

n
a
l
P
h
y
sics

2
1
2
(
2
0
0
6
)
5
4
0
–
5
6
5



+++++++++++++++++++++
++
++
++
++
++
++++

+++++++++++

+

++++++++++++++++++++++++++++++++++++++++++
+
+
+
+
+
+
+
+
++
+++++

+

+

+

+

+

+
+++++++++++++++++++++++++

+++++

x
D

en
si

ty

0.53 0.58 0.63 0.68 0.73 0.78 0.83 0.88
0

1

2

3

4

5

6

7
Reference
LF
God+

+++++++++++++++++++++
++
++
++
++
++
++++

+++++++++++

+

++++++++++++++++++++++++++++++++++++++++++
+
+
+
+
+
+
+
+
++
+++++

+

+

+

+

+

+
+++++++++++++++++++++++++

+++++

x

D
en

si
ty

0.53 0.58 0.63 0.68 0.73 0.78 0.83 0.88
0

1

2

3

4

5

6

7
Reference
LF
EO+

+++++++++++++++++++++
++
++
++
++
++
++++

+++++++++++

+

+++++++++++++++++++++++++++++++++++++++++
++
+
+
+
+
+
+
+
++
+++++

+

+

+

+

+

+
+++++++++++++++++++++++++

+++++

x

D
en

si
ty

0.53 0.58 0.63 0.68 0.73 0.78 0.83 0.88
0

1

2

3

4

5

6

7
Reference
LF
HLL+

+++++++++++++++++++++
++
++
++
++
++
++++

+++++++++++

+

++++++++++++++++++++++++++++++++++++++++++
+
+
+
+
+
+
+
+
++
+++++

+

+

+

+

+

+
+++++++++++++++++++++++++

+++++

x

D
en

si
ty

0.53 0.58 0.63 0.68 0.73 0.78 0.83 0.88
0

1

2

3

4

5

6

7
Reference
LF
HLLC+

++++++++++++++++++++
++
++
++
++
++
+++
++++++++++

+++

+

+
+++++++++++++++++++++++++++++++++++++++

++
++
+
+
+
+
+
+
+++++++

+
+

+

+

+

+

+
++++++++++++++++++++++++

+++++

x

D
en

si
ty

0.53 0.58 0.63 0.68 0.73 0.78 0.83 0.88
0

1

2

3

4

5

6

7
Reference
LF
FORCE+

++++++++++++++++++++
++
++
++
++
++
+++
++++++++++

+++

+

+
++++++++++++++++++++++++++++++++++++++++

++
+
+
+
+
+
+
+
++
++++++

+

+

+

+

+

+
++++++++++++++++++++++++

+++++

x

D
en

si
ty

0.53 0.58 0.63 0.68 0.73 0.78 0.83 0.88
0

1

2

3

4

5

6

7
Reference
LF
FLIC+

++++++++++++++++++++
++
++
++
++
++
+++
++++++++++

+++

+

+
++++++++++++++++++++++++++++++++++++++++

++
++
+
+
+
+
+
++
+++++

+
+

+

+

+

+

+
++++++++++++++++++++++++

+++++

x

D
en

si
ty

0.53 0.58 0.63 0.68 0.73 0.78 0.83 0.88
0

1

2

3

4

5

6

7
Reference
LF
MUSTA+

Fig. 9. Blast wave problem. t = 0.038. RKDG with different fluxes, k = 3, 400 cells. Density. Solid lines: the ‘‘exact’’ reference solution; hollow squares: the results
computed by the RKDG-LF scheme; plus symbols: results computed by the RKDG-G (top left), RKDG-EO (top right), RKDG-HLL (middle left), RKDG-HLLC
(middle right), RKDG-FORCE (bottom left), RKDG-FLIC (bottom middle) and RKDG-MUSTA (bottom right) schemes.
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Table 5
CPU time (in seconds) for the RKDG methods to compute the double Mach reflection problem for the two meshes of 120 · 30 and
240 · 60 cells

Flux Nx · Ny: 120 · 30 Nx · Ny: 240 · 60

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

LF 114.27 989.05 2778.06 1084.62 8177.00 21456.46
HLL 147.75 1149.49 3236.46 1388.65 9370.68 26396.87
FORCE 126.51 1120.47 2686.68 1211.80 9172.67 20737.88
MUSTA 132.77 1095.01 2926.06 1243.07 8788.72 22505.88
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Similar to the previous two examples, the resolution of the RKDG-LF scheme is the worst among all
schemes. The resolution of the RKDG-G, RKDG-EO and RKDG-HLLC schemes is the best, followed
closely by that of the RKDG-HLL scheme, and the resolution of these four schemes is much better than
that of the other four schemes. The resolution of the RKDG-FORCE, RKDG-FLIC and RKDG-MUSTA
schemes are only slightly better than that of the RKDG-LF scheme.

Example 3.5. Double Mach reflection. This problem is originally from [27]. The computational domain
for this problem is [0,4] · [0, 1]. The reflecting wall lies at the bottom, starting from x ¼ 1

6. Initially a
right-moving Mach 10 shock is positioned at x ¼ 1

6 ; y ¼ 0 and makes a 60� angle with the x-axis. For the
bottom boundary, the exact post-shock condition is imposed for the part from x = 0 to x ¼ 1

6 and a
reflective boundary condition is used for the rest. At the top boundary, the flow values are set to describe
the exact motion of a Mach 10 shock. We compute the solution up to t = 0.2. Based on our numerical
experimental results for the one dimensional case, we test only the four relatively better performing
schemes, namely the RKDG-LF, RKDG-HLL, RKDG-HLLC and RKDG-MUSTA schemes. The
results of the RKDG-HLLC scheme are almost the same as that of the RKDG-HLL scheme, hence we
only report the results of the other three schemes. In Table 5, we document the CPU time by the RKDG-
LF, RKDG-HLL and RKDG-MUSTA schemes. We can see that the RKDG-HLL scheme costs about
15–30% more CPU time than the RKDG-LF scheme for the same order of accuracy and same mesh, and
the RKDG-MUSTA scheme costs about 5–15% more than the RKDG-LF scheme. The RKDG methods
with WENO limiters, for four uniform meshes, with 120 · 30, 240 · 60, 480 · 120 and 960 · 240 cells,
and three different orders of accuracy (from k = 1 to k = 3, second to fourth order), are used in the
numerical experiments. To save space, we plot only the simulation results on the most refined mesh with
960 · 240 cells by the RKDG-LF, RKDG-HLL and RKDG-MUSTA schemes in Figs. 10–12. All the
figures are showing 30 equally spaced density contours from 1.5 to 22.7. It seems that all schemes
perform similarly well for this test case.
4. Concluding remarks

In this paper, we have systematically studied and compared a few different fluxes for the RKDG meth-
ods. Extensive one and two dimensional simulations on the hyperbolic systems of Euler equations indicate
that RKDG methods with the LF flux cost the least CPU time among all, but the numerical errors and
resolution of solutions on the discontinuities are also the worst among all. The RKDG methods with
the Godunov or EO fluxes seem to cost significantly more CPU time than the RKDG-LF method. The
HLL, HLLC and MUSTA fluxes might be good choices as fluxes for the RKDG method when all factors
such as the cost of CPU time, numerical errors and resolution of discontinuities in the solution are
considered.
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We have also tested the RKDG methods based on a few other numerical fluxes, such as the second-
order Lax–Wendroff (LW) flux, the Warming-Beam (WB) flux, and the WAF flux [24]. Our numerical
tests indicate that spurious oscillations appear for the Lax shock tube problem for the RKDG-LW
and RKDG-WB schemes, and the codes are unstable (they blow up) for the blast wave test case. Because
the WAF flux is based on the average of Godunov and Lax–Wendroff fluxes, it is more costly than the
Godunov flux and hence is not comparable in CPU time cost with schemes such as RKDG-HLL and
RKDG-MUSTA.
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